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Outline

e Indirect Detection - Where it fits, what it is.

e Agency advice: Build science plan for each area for next 10 to 20 years, help with

G

the decision tree, explain balance of complementary methods, guidance on making
ecisions of which techniques are needed for dark matter, theoretical effort to make
the case, how could results in one area affect where we go in other areas - write DM

science plan.

e Open forum discussion of the charge:

Science Drivers
What experiments should be covered?

What metrics should be used to evaluate the potential of Indirect Detection for
DM science?

Identify overlaps with other subgroups.

Participate in discussion with CF1 and Instrumentation groups

e Please contribute comments, or a SINGLE overhead, | will try to record these
comments and provide feedback to the Cosmic Frontier group.
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1450 meters

2450 meters

2820 meters

IceCube Lab

IceCube Array
86 strings, 60 sensors each
5,160 cptical sensers

DeepCore
6 strings optimized
for low energies

1 Eiffel Tower
324 meters

ICECUBE
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e Positron excess but no antiprotons motivated leptophillic models to boost
electron production, while suppressing hadronic channels.
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Dark Matter can be directly detected through nuclear recoil in “direct detection”
experiments, missing energy or momentum in accelerators, or through detection of
products of annihilation in astrophysical halos

[hep-ph] arXiv:1011.4514 L. Bergstrom et al.

Bergstrim, Bringmann & Edsji (2010)
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Cosmic Frontier Working Group

Charge for the WIMP Dark Matter Indirect Detection subgroup
(James Buckley, Doug Cowen, Stefano Profumo)

(1) Summarize the Status and Current Issues: Apply to all indirect searches for dark
matter an agreed-upon set of benchmark annihilation final states, dark matter density
profiles, substructure setups and velocity distributions, and parameter space to use for
side-by-side comparisons. Articulate what would be lost if one or more of the various
approaches were not pursued over the next decade. Summarize the potential
sensitivity and anticipated uncertainties for each technique or project.

(2) Complementarity: Assess the complementarity of different current indirect
detection techniques, and of indirect detection with direct and collider searches.
Coordinate with CF1 and CF3. Compare in particular the prospects for constraining the
SD cross section with indirect detection (e.g. of solar WIMPs) vs. direct detection.

(3) Future Experiments: Describe the attributes of future experiments for DM
detection, addressing the relevance of sensitivity to the GC, the importance of angular
resolution, FoV, and threshold energy. Compare to the anticipated results from existing
facilities in the same timeframe. Consider new and possible future experiments such as
AMS (cosmic ray electrons and positrons), CTA (gamma rays), lceCube/PINGU
(neutrinos) and other future experiments. Assuming detection of dark matter, evaluate
how well its properties can be measured by each such experiment.

(4) Theoretical HEP Issues: Survey theoretical models for WIMP dark matter from the
standpoint of indirect signals (e.g. assume masses, spin, some effective interaction...).
Evaluate the challenges in comparing indirect detection with direct detection, colliders,
and dark matter production in the early universe. Discuss the role of (non-SUSY)
WIMP models, describe how SUSY space has been (and will be) constrained by LHC
results, and compare leading benchmark SUSY WIMP models to one another. Extend
the discussion to include axion(-like) particle models and other dark matter models and
compare these to models for WIMP dark matter.

(5) Theoretical Astrophysics Issues: Describe the current understanding of halo
profiles, clumpiness and velocity distribution and evaluate how their uncertainties impact
dark matter searches. Describe the current understanding of the impact of diffuse and
point sources as background to searches for gamma-ray signatures of dark matter.

(6) Future Detection Technology: Describe realistically possible advances in detection
technology that would have an immediate and significant impact on any of the existing
techniques of indirect dark matter detection. Highlight possible “game-changing”
advances and describe how they would transform the field.
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de los Heros for the lceCube Collaboration, Dec 2010, arXiv:1012.0184

e Limits on the DM annilation flux and Spin-Dependent wimp-nucleon cross-section from
lceCube compared with Direct detection limits

e Inred, expected improvement in sensitivity with the addition of the six-string Deep Core

detector
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HESS Il

o 28m HESS-II telescope added to 4 12m
telescopes. Nearly operational, will
provide very low threshold monoscopic-
imaging, some reduction in threshold of
HESS 12m telescope array for stereoscopic
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Stacking dwarf results brings Fermi upper limits in range of the natural cross section for
annihilation at energies < about 30 GeV. Possibly one of the best constraints on WIMP

WIMP cross-section [cm? /s]
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Liena Garde, M., Conrad, J., Cohen-Tanugi, J. for Fermi-LAT
Collaboration, Fermi Symposium, May 2011

dark matter provided by any technique.
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At sufficiently high neutralino masses,
the W and Z can act as carriers of a
long-range (Yukawa-like) force,
resulting in a velocity dependent
enhancement in cross section ( 1/v or
even 1/v2 enhancement near

resonance)
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(Matthieu Vivier et al. for the VERITAS Collaboration, 2011, ICRC proceedings)

o At high mass, expect Sommerfeld enhancement from W, Z exchange for standard
neutralinos can give large enhancement in present annihilation cross section (lower
relative velocity) compared with decoupling cross section (higher velocity).
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VERITAS Segue | Results

PHYSICAL REVIEW D 85, 062001 (2012)
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(Talk by Andy Smith, Friday Indirect Parallel)

 PAMELA-inspired models predict large neutralino masses, and invoke new scalar fields to
explain high branching ratio to leptons, and large (Sommerfeld-enhanced) cross section

o VERITAS Segue I limits provide tight constraints on leptophillic models
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Energy threshold is important, but do we build more LSTs or MSTs?
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Fit analytical model to CTA sensitivity and scaled MST and LST to ~Ee@5|wua| enhancements.

* When taking Fermi into consideration, additional MSTs seem like the correct approach
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Photon-Axion Mixing

Hooper and Serpico, PRL 99, 231102 (2007)
Sanchez-Conde, Paneque, Bloom, Prada & Dominguez, Phys. Rev. D 79 (2009) 123511

* Photon-ALP mixing can happen at
the source, or during photon

.. AWt ———)
propagation in the presence of e T e ——
intergalactic magnetic field. T ——— e ——-

< - Y < ®*(eBL)
* One signature of this effect will 5 8
IGMF

be a relatively sharp drop of
~30% in the spectrum between |
and 100 GeV.

* Another effect is that mixing
could make some photons travel
to Earth as axions and then
convert back to photons. Axions
would not be attenuated by EBL.
Therefore, one could expect to
see less EBL absorption than
expected at E~ITeV for distant
sources. The boost effect could
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The flux increase due to axions propagating through EBL
could be tested with VERITAS by observing distant sources.

Absorbed Spectrum/Source Spectrum

be (.)f fac.tor ~IOO_ in the most The effect could be disentangled from our ignorance of EBL
Optimistic scenarios. density by seeing the effect in multiple sources at different z.
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